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THE CONTRACTION OF SATELLITE ORBITS UNDER THE
INFLUENCE OF AIR DRAG

V. WITH DAY-TO-NIGHT VARIATION IN AIR DENSITY
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The effect of air drag on satellite orbits of small eccentricity (< 0-2) was studied in part I on the
assumption that the atmosphere was spherically symmetrical. In reality the density of the upper
atmosphere depends on the elevation of the Sun above the horizon and has a maximum when the
Sun is almost overhead. In the present paper the theory is extended to an atmosphere in which the
air density at a given height varies sinusoidally with the geocentric angular distance from the
maximum-density direction. Equations are derived which show how perigee distance and orbital
period vary with eccentricity throughout the satellite’s life, and how eccentricity varies with time.
Expressions are also obtained for lifetime and air density at perigee in terms of the rate of change
of orbital period.

The main geometrical parameter determining the long-term effect of this day-to-night variation
is the angular distance ¢, of perigee from the maximum-density direction. Results are obtained for
¢, constant and ¢, varying linearly with time.
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1. INTRODUCTION
1-1. General
Parts I and III of this series of papers (Cook, King-Hele & Walker 1960; King-Hele 1962)

developed the basic theory for the contraction of satellite orbits in a spherically symmetrical
atmosphere in which air density varied exponentially with height above the Earth (constant
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34 G. E. COOK AND D. G. KING-HELE

scale height). In Parts IT and IV the theory was extended to take account of atmospheric
oblateness (Cook, King-Hele & Walker 1961) and the variation of scale height with altitude
(Cook & King-Hele 1963). In reality the density of the atmosphere above about 200 km
also exhibits a day-to-night variation, and it is the aim of the present paper to incorporate
this variation in the theory, in the simplest possible manner. The paper is a shortened
version of a Royal Aircraft Establishment Report issued in October 1964.

1-2. Day-to-night variation in density

It is known that the upper-atmosphere density reaches a minimum a little before dawn,
rises to a maximum at about 2 p.m. local time and then declines until about midnight, by
which time the rather flat minimum is almost reached. This variation is small at a height of
200 km, less than 10 9, when solar activity is near maximum, but becomes much greater
at higher altitudes, with the factor

J = maximum day-time density/minimum night-time density

reaching values of up to 10 (at heights near 700 km) when the Sun is fairly active or values
of up to 5 (at heights near 500 km) when solar activity is near minimum (King-Hele & Rees
1963). Although it is convenient when describing this day-to-night variation to treat it as
if it depended mainly on the time of day, it really depends primarily on the zenith angle of
the Sun: the atmosphere is, as it were, drawn up into a bulge having its centre beneath
a ‘mock Sun’ which lags about 2h or 30° behind the real Sun, and with the horizontal
cross-section of the bulge being, to a first approximation, circular. Thus the upper-
atmosphere density above a point on the Earth at any given latitude will experience the
diurnal variation in density already described, but the centre of the bulge will only be
sampled if the Sun passes nearly overhead, i.e. if the point is near the equator; at higher
latitudes the maximum density attained still occurs at 2 p.m., but, since only the upper slopes
of the bulge rather than its summit are being sampled, this maximum density is lower than
at the same longitude nearer the equator.

Our aim is to describe analytically the evolution of satellite orbits in such an asymmetrical
atmosphere, not just during one revolution, but throughout the satellite’s life. This aim is
difficult to achieve because of the multiplicity of parameters required to define the situation.
At first sight these parameters seem likely to include (1) the factor f; (2) its variation with
height, and (3) the form of the variation of density with ¢, the angular distance from the
centre of the bulge, given f; (4) the angular distance ¢, of perigee from the centre of the bulge,
and (5), given ¢,, the orientation of the orbital plane relative to the bulge; the long-term
motion of (6) ¢, and (7) the orbital plane, relative to the bulge. In fact, several of these
parameters can be eliminated by various stratagems, but enough remain to complicate the
presentation of some results.

1-3. Limitations

As before, the theory is primarily applicable to satellite orbits with perigee heights
between 150 and 1000km, and eccentricities less than 0-2: if the perigee height is below
150 km, the satellite is unlikely to remain in orbit for more than a few revolutions; at heights
greater than 1000 km, solar radiation pressure exceeds air drag and is often more important
as a perturbing force.
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1-4. Previous work

The effect of the day-to-night variation in air density on satellite orbital theory was first
discussed by Wyatt (1961), who was concerned only with the modifications required in the
equation for air density in terms of the rate of change of period. The problem was also
investigated by Davies (1963), who assumed the contours of constant density were ellipsoids
of revolution and obtained expressions for the changes in the orbital elements during one
revolution, under certain restricted conditions. Fominov (1963) has obtained the changes
during one revolution for a nearly spherical atmosphere in which the departures from
spherical symmetry are general functions of latitude and of the geocentric sun—perigee angle.

2. ASSUMPTIONS

All but two of the assumptions are virtually the same as in part I, and these are listed
below without comment, since they have already been discussed in part I. Assumptions
(a) and (¢) are changed. f

(a) The density p of the atmosphere at a given height depends on its angular distance ¢
from the centre B of the ‘diurnal bulge’, and B is assumed to be at the same declination as
the Sun but lagging behind it in right ascension by an angle A, normally taken as 30°
(see §3).

(b) The air density p at a given height and given ¢ does not vary with time.

(¢) For a given value of ¢, the air density is assumed to vary exponentially with altitude;
i.e. the density scale height is taken as independent of altitude.

(d) The resultant aerodynamic force on the satellite acts in the direction opposite to the
velocity V of the satellite relative to the ambient air, and may be taken as 1pV25C,, where
C,, is the drag coefficient based on cross-sectional area §, and SCj, is assumed constant.

(¢) The atmosphere rotates with constant angular velocity w, assumed to be of the same
order as that of the Earth.

(f) The orbit of the satellite when unperturbed by air drag is taken as an ellipse with
a rotating major axis, lying in a plane through the Earth’s centre, and having the Earth’s
centre as focus. The plane may be rotating.

(g) The action of air drag changes the orbit during one revolution by only a small amount
whose square can be neglected.

(h) The orbital eccentricity is small (< 0-2).

(z) Luni-solar perturbations are ignored.

(7) The inclination ¢ of the orbit to the equator remains constant.

3. MODEL FOR AIR DENSITY
3-1. General criteria governing the choice
As stated in § 2, we assume that the air density experienced by a satellite S at a given
distance r from the Earth’s centre C depends only on the angular distance ¢ (= BCS) from B,
the ‘centre of the diurnal bulge’, i.e. the point where the density is greatest. It is therefore
assumed that the cross-section of the bulge, in a plane perpendicular to CB, is circular; the
density 30° north of B, for example, is the same as the density 30° east of B. The assumption
5-2
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of a circular cross-section is probably satisfactory as a first approximation; the exact shape
is not yet known, but it is believed to be almost circular (Jacchia 1964).

In deciding what mathematical form to assume for the variation of p with ¢, i.e. the
density profile across the bulge, we have to remember that:

(1) the observational results so far available mostly refer to traverses of the bulge in
directions fairly close to an east—west line, and, unless the cross-section is exactly circular,
traverses in the north—south direction would give different profiles;

(2) the form of the profiles varies with altitude and with solar activity;

(3) the maximum amplitude of the ratio (max. density)/(min. density) varies greatly
with altitude and solar activity.

In these circumstances it would be fruitless to try to specify a variation of p with ¢ which
corresponds exactly to the particular observational profiles available, and it seems best to
begin by assuming the simplest possible variation of p with ¢ which is reasonably realistic.
A sinusoidal variation fulfils these requirements (see §3-2 below), and gives a far better
approximation to the truth than the previous assumption that density is independent of ¢.
The theory is therefore developed on the assumption that p varies sinusoidally with ¢, the
maximum being at ¢ = 0 and the minimum at ¢ = 180°. The theory will be developed in
a later paper with a more realistic variation of density with ¢ and height, to check the
accuracy of the simple model and to show the best way of applying it.

3-2. Detailed specification

The upper-atmosphere model of Harris & Priester (1962) is the most comprehensive for
which values have been tabulated, and the values agree well with observation, both at
conditions of high solar activity and, with some slight modifications, near sunspot minimum.
The necessary modifications will be made in the Cira 1965 model (Cospar 1963).

Figure 1 shows the variation of density with local time as given by Harris & Priester (1962)
for a height of 400 km when the solar radiation energy S’ on a wavelength of 10-7 cm is
150 Wm~2(c/s)~!. Since the model of Harris & Priester applies for equatorial regions, only
a shift of origin is needed to convert the local time to ¢, and a scale for ¢ has been inserted in
figure 1, its zero being taken at the time of maximum density.

Also shown in figure 1 are two possible approximations for p, a sinusoidal variation with ¢,
thatis p = A+ Bcos¢(=A4—B+2Bcos?$¢),and a fourth-power variation, p = C+ D cos*1¢.
The values of 4 to D in figure 1 have been chosen to give good agreement at ¢ = 0 and
¢ = 180°. Butitshould be emphasized that for a particular orbit the values would be chosen
so that the agreement was good over the section of the orbit where drag is important.
Usually this section would cover quite a small angle near perigee, perhaps 60° (though
for a near-circular orbit drag would be important over a wider range of values
of ).

From figure 1 (and similar figures, which have been drawn but are not reproduced here)
it appears that the sinusoidal variation of p with ¢ is acceptable as a first approximation, and
is far more realistic than assuming that p is independent of ¢. When the approximation only
needs to be accurate over a small range of values of ¢, the sinusoidal form often proves
excellent, as for example with the dotted curve, 33+ 3:3 cos ¢, in figure 1, which is accurate
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CONTRACTION OF SATELLITE ORBITS UNDER AIR DRAG. V 37

to 29, over a range of 180° in ¢. The fourth-power variation gives a better fit than the
sinusoidal curve and would be suitable as a second approximation, to improve the accuracy
of the results obtained with the sinusoidal approximation.

density (10-15 g/cm?)

local time (h)

Ficure 1. Variation of air density with time at a height of 400 km when the solar radiation energy
S on a wavelength of 10-7 cm is 150 W m~2(c/s)~!. ——, Harris & Priester (1962); ————— X
42+ 24 cos @; ...... , 3:3+33 cos p; — ——, 18+ 4-8cos* 1.

3:3. Expression jfor air density in terms of ¢

If density p varies sinusoidally with ¢ and exponentially with distance 7 from the Earth’s
COntre, We MEY WHLEp = py(1+Foosg) exp {— (r—r) [H), (1)

where F and H may as a first approximation be taken as constant for any given orbit, though
the value of each will be chosen appropriate to a height near that of perigee and for the
current level of solar activity. p, is the density at distance 7, from the Earth’s centre when
¢ = 90°. 7, is arbitrary, but in practice it is often most convenient to take it as either the
initial or current perigee distance.

Equation (1), with H and F constant, is not intended to provide a physically consistent
picture of the atmosphere: with its two adjustable constants, the equation should, however,
be capable of providing a good approximation to the drag experienced by a satellite over
the section of the orbit where drag is important. As an example, figure 2 shows the air
density, as given by Harris & Priester (1962), along the orbit of a satellite with perigee at the
centre of the bulge (¢ = 0) at a height of 400 km, with orbital eccentricity 0-1 and at a level
of solar activity corresponding to §” = 150. Also shown is the approximation to density
given by (1), with p, = 4-486 x 10715 g/cm?, F = 0-48 and H = 67 km; this approximation
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38 G. E. COOK AND D. G. KING-HELE

is never in error by more than 1} %, of the density at perigee, and the error could no doubt
be reduced by seeking better values of ' and H.

The choice of the best values for ' and H is beyond the scope of the present paper, since
it depends on the form of their variation with height, which is not considered here and will
be discussed in a future paper. However, in the absence of more sophisticated methods,
a guide to the appropriate values of H and F can be obtained by assuming that values for
heights near perigee should be used. For average solar activity the value of H increases

7
p

)

J

/ \

density (10-1 g/cm?)
S~
"

/ \

4 A\

4 \\
// x

= pN

60 40 20 0 20 40 60
angle ¢ from perigee (degrees)

Ficure 2. Air density at angular distances up to 60° from perigee as encountered by a satellite with
perigee height 400 km, ¢ = 0-1, 8" = 150 W m2(c/s) !, perigee at centre of bulge. , Density
given by Harris & Priester (1962) ; ———— , p = 4486 x 10715{1 4 0-48cos ¢} exp { — (y — 400)/67}.

from 20km at a height of about 170km, to 80 km at a height of about 700km (King-Hele
1964, p. 138). The value chosen for F will depend on the angular distance of perigee from
the centre of the bulge B; but possibly the best guide to / would be obtained by assuming
that F' was chosen so as to achieve the correct ratio of maximum density p,,,, to minimum

density p., , 1.€. so that _ Prmax, 1 —I—F, I [__1

Pmin. 1-F f +1
The variation of (f—1)/(f+1) with height as given by Harris & Priester (1962) is shown
in figure 3. It should be emphasized, however, that, although this value for F'is perhaps the
most logical one to give as a guide, the best value of F ' may differ widely from (f—1)/(f+1).

or

3-4. Relation between ¢ and true anomaly 0
In order to evaluate the effect of air drag we need to express the angular distance ¢ of the
satellite from the centre of the bulge in terms of the angular position in its orbit, as given
by the true anomaly 4.
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Figure 4 (a) shows the position of the satellite S in terms of the usual orbital elements €,
» and ¢ and the true anomaly 6. Let (a, ) be its right ascension and declination. Similarly,
figure 4 () shows the centre B of the bulge, lagging by an angle A in right ascension behind
the subsolar point, which has right ascension and declination (&g, d;). Thus the right
ascension and declination of the centre of the bulge (g, d;) are given by

oy = tg+4, (2)
08 B —
e e
7 ~ L~ ~
// -
w1
SIS / -

04

/

. /
/
.
///
7/ Ve

/
7 )

800 400 600
height (km)

Ficure 3. Variation of ( f—1)/( f+1) with height, as given by Harris & Priester (1962).
e, 8 = 705 ——, 8 = 150; ———, §' = 250.

If we introduce a right-handed system of axes, with the x axis towards %, and the z axis
along the Earth’s axis, a unit vector s along 0§ has the components

s = (cosd cosa, cos dsin a, sind). (4)
Similarly a unit vector b along OB has the components
b = (cos &, cosap, cosdgsinag, sindy). (5)
The geocentric satellite-bulge angle ¢ = SOB is given by
cos ¢ = b.s = sin dsin dz+cos d cos dz cos (@ —ay). (6)

Applying the equations of spherical trigonometry to the spherical triangle NS4 in

figure 4 (a), we obtain sin 8 = sinisin (0+6), (7)
cos (w+8) = cos (¢—£2) cos 4, (8)
cosisin (w+0) = sin (¢ —2) cosd. (9)

Using equations (7) to (9) in (6), we have
cos ¢ = sin d,sinisin (w+0) + cos dz{cos (Q—ay) cos (w+6)
—cosisin'(Q—ap) sin (0 +6)}. (10)
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40 G. E. COOK AND D. G. KING-HELE
Equation (10) may be written as
cos¢ = Acos 0+ Bsinb, (11)
where A = sin §sin isin + cos dp{cos (Q—ay) cos w —cosisin (Q— o) sin v}, (12)
B = sin §,sini cos 0 —cos dp{cos (Q—ay) sin w4 cos i sin (2 —ay) cos w}. (13)

Also, if ¢, denotes the angle POB (the ‘perigee-bulge’ angle), ¢ — ¢, when ¢ = 0, so that
from (11) COSQSI, — A, (14)

equator

Ficure 4. Position of (a) satellite, and (b)) Sun and centre of diurnal bulge, B, on unit sphere.

The quantity B is not of interest, since it vanishes from the analysis, but we require to
express cos ¢, in terms of the Sun’s mean longitude L. For the Sun the equations corre-
sponding to (7)—(9) are sind; — sinesin L, (15)
cos L = cos dgcos ag, (16)

cos ¢sin L = cos 8gsin ag, (17)
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CONTRACTION OF SATELLITE ORBITS UNDER AIR DRAG. V 41

where ¢ is the obliquity of the ecliptic (23-4°). Writing «; = a3+ in (12), and eliminating
ag and dg with the aid of (15) to (17), we find

A = cos ¢, = sinesinisin Lsinw+-{cos L cos (Q—A) +cosesin Lsin (2—A1)} cos w
—cosi{cos Lsin (Q—A) —cosesin Lcos (2—A)}sinw. (18)
Equation (18) can be re-arranged in a form which shows its periodicities more clearly, as
cos ¢, = {cos? ¢ cos (w+Q—A—L)+sin® e cos (0 +Q—A+- L)} cos® §i
+{cos? J¢cos (0 —Q+A+ L) +sin% tecos (w—Q+A—L)}sin? 3
+3{cos (w— L) —cos (w+L)}sinisine. ' (19)

3:5. Density in terms of 0 or E
The density p may be expressed in terms of § by (1) and (11) as
p = pil+F(Acosd+ Bsinb)}exp{—p(r—r,)}, (20)

where § = 1/H. We require to express (20) in terms of the eccentric anomaly E, and this
may be done using the equations

r=a(l—ecosE), (21)
cosE—e
— 22
cos b 1—ecosE (22)
= cos E—¢(1 —cos? E) —¢*(1 —cos? E) cos E+ O(e?) (23)

and sinf = QM

l—ecosE ° (24)

Using (14), (21), (23) and (24), equation (20) becomes

0 = Po [1 +F cos ¢, {cos E—e(1 —cos? E) —¢2(1—cos? E) cos E+ O(e*)}

+FB(1 —e?)isin E

I —scos B exp{f(r,—a+xcosE)}, (25)

where x = ae.

4, BAsic EQUATIONS

We use as variables the semi major axis a and the quantity x = ae. It was shown in part I
that the changes per revolution in @ and x are given by

27 (1+¢cos £)*

— a2
Aa =—da fo (1—ecos E)}

dE, (26)

1 E
st [ i () o o

2
where 0= $Cp (1 10 o z) R
m Upo

6 ‘ Vor. 259. A,
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42 G. E. COOK AND D. G. KING-HELE

m being the mass of the satellite, w the angular velocity of the atmosphere, v the velocity of
the satellite, and suffix p0 denotes initial values at perigee. Expanding (26) as a power
series in ¢ and substituting for p from (25), we obtain

2m
Ba = —dapyexp (Blry—a)} | " {1+ 2ecos -4 e cos? E+0(e)}
0

X [14Fcos @,{cos F—e(1 —cos? E) —¢?(1—cos? E) cos E}] exp (fxcos E) dE.  (28)

Since the term in B in (25) is an odd function of E, it makes no contribution to (28) and
vanishes from the analysis. Similarly, from equation (27), we obtain

Ax = —da’pyexp{f(r,—a)} J% {cos E+e(14-cos? E) +4e%(2 cos E+-cos® E) - 0(e3)}
0

X [1+4F cos ¢ {cos E-—e(1 —cos® E) —e?(1 —cos® E) cos E}] exp (fxcos E) dE. (29)

On multiplying out the brackets in (28) and using the integral representation of the
Bessel function of the first kind and imaginary argument (Watson 1958, p. 181),

2
I(2) = iﬂf cosnd exp (zcos ) dd, (30)
we have ’

Aa = —2mndap,exp {f(ro—a)} [1,+2¢l, +2e(I,+ L,)
+Fcos @, {1, +Fe(ly+31,) +3e*(I, +-315)} +0(e*)],  (31)
where z = fx = ae/H, and I, is written for ,(z). Similarly, from (29), we have
Ax = —2mdapyexp{f(ro—a)} [+ $¢(81y+1,) +Le2 (111, + I,)
1 Fos g, {3 (1) +3e(31,+ I) —45e* (I, ~ 201, 5I)}-0(e%)].  (32)

These equations demand different treatment according as z > 3 (phase 1) or z < 3 (phase 2).
Section 5 deals with phase 1 and § 6 with phase 2.

5. SOLUTION WHEN z > 3 (PHASE 1)
5'1. Equation for da/dx
When z > 3, i.e. when the eccentricity is greater than about 0-02, the asymptotic
expansion of 1,(z)

expz [, 4n*—1% (4n®—1%) (4n*—3%) ;
L(z) (2ﬂz)%{ 118z 21 (8z)2 (33)
can be used in equations (31) and (32). On making this substitution and writing
_ Fcosg,
- 1+Fcosg, (34)

we obtain

¥
Aa:——(%) 8a2pp[1+23+%ez+ e 75 3

1 2822 102423 102423 4fa

1 g 1 ¢
-”(?z+ 22+256Z3+,b’d)+0(e > 2P 25)] (35)
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3 15 105 3

— 2 3,2 Y~ T —
and Ay —-— ( )3“ pf’[HQH “ T8z 128227 10242° 4fa

1 9 15, 2 s 1 e
ot me ) HO( 2o 5 [ 49
where Py = Po(1+Fcosg,) exp{f(r,—a)+z}. (37)

From (1), p, represents the density at perigee, where ¢ = ¢, and r = a— Hz. On dividing
(35) by (36), writing f = 1/H, and assuming that an expansion in powers of 4 is permissible,
we obtain

da 1da H u 3\ 4 e 1 u @2 i
de  Hdz 1452 +8z2+823_zw222(1+22) 4z3+0(?”2 ?’}ZVZTPZ&) (38)

the terms of order ¢3, ¢4, ... which ought to appear in the order term being omitted because
they have zero coefficients (King-Hele 1962). Since z > 3, the expansion of (38) as a power
series in u is certainly valid for values of || up to 1, and for our purposes it is obviously
convenient to take 1 as the upper limit for ||, since the last three order-terms can then be
dropped. From (34), |¢| can only exceed 1 when Fcos¢, < —%, i.e. when F is large and
cos ¢, is negative. If F < 0-5, ¢, is unrestricted ; as F increases from 0-5 to 1, the maximum
permissible value for ¢, decreases from 180° to 120°; as F tends to inﬁnity, the maximum
permissible ¢, tends to 90°. (In practice F is unlikely to exceed 1, since this would lead to
negative values of density, by equation (1).)

5-2. Solution when $, is constant

We consider first an orbit for which the geocentric angle between perigee and the centre
of the bulge, ¢,, remains constant, or varies so little that a constant mean value is acceptable.
Since perigee height will not change by more than about one scale height during phase 1,
a constant value of F'is also likely to be acceptable. Hence ¢ will be taken constant, with
lu| < 1. In practice ¢, remains nearly constant when the orbital inclination is near 40° or
when the lifetime is short: as a very rough approximation, for ¢ < 50° and a typical orbit,
¢, will vary by 30° in a time of roughly [1/(40—1)| years (see King-Hele & Walker 1961).

5:2-1. Perigee distance and orbital period in terms of e
With # constant, equation (38) can be integrated to give
1 H

Go—@ __ 11020 2
H z+3In— + ( )( Jr2z+2z0) ao( —z)

S Dfrenm Gl roffn g ) o

where suffix 0 denotes initial values. Since

0" _ 1ln + (__14)(1+_1*+ﬁ1ﬁ)_§(z0.~z)

2
AL Hhraeen Gri)ro(fm®, L, ). o)
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44 G. E. COOK AND D. G. KING-HELE

On writing z = ae/H and eliminating a/a, by means of (39), we obtain the perigee distance
in terms of eccentricity as

"0 =Th _ 11 fol1H0) 3H(l+eo 1){1+£(£+_1_)}

H e(14e¢,)  8a,\ e € 2a,\¢ ' ¢,
_HH 1_+_@___1_){ H (1_ l)} (E t ¢ _Hi)
2a0( e € 1+4a0(3+’u) e Feo +0 alne’2’3a3e3 - (41)

This equation may be written in the form

71)0[; Ty (71»05 Tp) _/‘é, (42)

sph. atm, 29

where the suffix ‘sph.atm.’” denotes the expression obtained in part I (the terms in (41)
independent of z) and order terms have been omitted. From (41), § is given by

£~ {(1+eo)€0 }{1+ (3-+ )(%Q+1)} (43)

e

and is plotted against e/e, for various z, in ﬁgure 5, with the term (1+¢,) replaced by
(1-+e¢,—e). This change is necessary in order to make £ zero at ¢ = ¢,; the ¢ term was dropped
in equation (41) because it was smaller than the neglected (H/a) In (¢y/¢) term. Figure 5 is
drawn for H/a = 0-008; but the values for H/a = 0-006 are so close as to be indistinguishable.

Figure 5 shows that the variations of { with z, and g are small: the z = 1, z; = 30 curve
would in most circumstances be accurate enough to represent £ for all values of z, and g, so
that £ could be written, with maximum error 10 9, as

£~ 51‘6 (969—1) (31#89).

It is also worth noting that (38) may be rewritten as

1 da 1 3 3 H e ¢ 1 pu p? ,u3)
= =1
Hdlz4+a) = 240 T8 ol

2z t) B A T8 A @

This means that, when ¢, is constant, the spherical-atmosphere results still hold, to the order

of accuracy indicated, if z is replaced by (z+ ), that is, if ¢ is replaced by (e+ uH/a,). This

representation can be useful—e.g. figure 4 of part I is valid for an atmosphere with day-to-

night variation if ¢ is read as (e+ uf/a,)—Dbut it is slightly less accurate because the p?/z3

term in the equation above gives rise to a H?/a%? term in the equation for (r,,—7,)/H.
The orbital period 7" is given in terms of the eccentricity by the relation

T a\t  (1—e\¥(r,\}
7w ~ (0 () (44)
On substituting for 7,/r,, from (41), we have
—e eo(1+e) 3H(1+eo 1){ _Ii(l L)}
T, (l—e) [[1 l:l e(1-+e¢,) 4a0 e € +2a0 +eo

Ao (ol )]

b b 4,3
a, \ ¢ €o e’ 2a° 3a‘e

T) { 3H ,ug}
— (7 14250 46
(n sph, atm, +2rp0 29 ( )
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5-2:2. Eccentricity in terms of time

We next determine the variation of eccentricity with time. Equation (36) can, with the
aid of (33), be rewritten as

1 3 H 3u
— 2 _ Y L 2 1 9K
Ax = —2mda’p, exp (—z) I,(z) [1 +2e—p (22 822) -+ O(e 7 823)] . (47)
P /l
\’iiij\j]/ 30
;\1 [/
— 6 ]
< |/
5 s o
= il
= O m
TS ) ///
:Z” 201 /20
<z i
=0 : /4
£F 7
OU TS /,
A<ZO A,
oZ 7Y
-l 2 /
R v
-
5 |
—
0 __/-,g————'—“—;-‘%/
10 0-8 06 0-4 02 01
eley
Ficure 5. Variation of § with ¢/¢,, Numbers on curves are values of z,.
=1 ——— p==1; ——— , locus of end-points, # = 1.
g To eliminate p, exp (—z) from (47), we observe that, for ¢, constant, (37) gives
= Ppexp (—2) = ppoexp{f(a,—a) —zo}, (48)
> > . JIi(z)  Kg—x ﬂg H, % H
0 = while Blay—a) =™ Ry 0( , S, a—%) (49)
)
E 8 from equation (28) of part I. On using these last two equations to eliminate p,exp (—z)
= A from (47) and noting that At = T = T;(a/a,)?, we obtain
=
<z Ax Ba? (a\?} X\ [, HE prE? 1 H x H* p
) St U Pl i 0 “€- £
Eg At X (ao) (expao) { + }‘1+ ¢—H (22 822) +0( 7 Y ae 223):’
3 (50)
%E where B = %b‘xoppoll(zo) exp (—zy,—¢) (51)
o=

and the O(3x/82z%) term which occurs has been ‘rounded up’ to O(#/2z%). On multiplying
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46 G. E. COOK AND D. G. KING-HELE

out the expressions in braces in (50), expressing £ in terms of z by (42) and (40), and
expanding (a/a,)? by means of (39), we find

dx  Bdj x 1. .5 1—3%e, 1 3\ w21 1)\?
@i = (o) (et (00 ) G )

X o z 2z, 5 VAR
xy H?
+0( E @ 223)} (52)

On inverting equation (52), expanding the exponential, and writing z = x/H, we have

dt H H 3H% ,(3H* H?
—_Bdod "x[l+ 2l -(;+/¢{(1+2e0) 2, 8x§} {4x2_“2xx0}
H, x, H?
+0( %, %, éﬁzg)] (53)
On integrating from x, to x, and writing ¢/e, = A, we obtain
2B, _ 2 % (9)3 2 L:,_ 2___3__2} d€, 1 H? :“)
St = 1 (ORI g (3=l - (10 +0( ZIng, o o),

(54)

after omitting a term (uH/ay) (1—2) (1+24—22), which is of order H/a, and a term
(#2/223) {31n (1/A) —2(1—A)}, which has a maximum value of 0-0154*> (when z = 3 and
z, == 5'7) and can be written O(0-44?/z3), which is less than the last of the existing order
terms. Let ¢, denote the value of ¢ given by (54) without the order terms when A = 0, so that

Gy 41, | M _L)}
f =20 {1 Fot g (1 - (55)
and ¢, is approximately the satellite’s lifetime. On dividing (54) by (55) we find

b e gy 2 ( H1H2ﬂﬂ)
¢ =1-4 3 (1=4) (1-4)+0 I A’ a?e’ 223’ 322)°

! (56)

where the term 3421(1—2Q)/z3 has been written as O(4?/3z?).
Equation (56) gives ¢ in terms of A(= ¢/e;). To obtain ¢ in terms of ¢ is straightforward,
but it should be emphasized that the error terms are bound to become large as ;. For

an equation of the form tt, = 1—22+0(e),
where ¢ is small, may be rewritten

A= J(l——)+0( ) (57)

and, as 10, O(¢/21) becomes large. On expressing A in terms of ¢ from (56) and altering
the order terms in accordance with (57), we have

v = () Tl () Fro@] =405

@;@iﬂ&ﬁﬁ
+O(22 In ¢’ 222 2ez%° 6ez?) " (58)
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CONTRACTION OF SATELLITE ORBITS UNDER AIR DRAG. V. 47

Figure 6 shows how e/e, varies with ¢/¢; for various values of /z,, as given by equation (56),
with ¢, taken as 0 because it has already been established that the effect of ¢, and ¢} terms
is not significant (King-Hele 1960).

1-0

08

\ _0:2
B = \\ N ‘.
\\\%\\‘\
\\\ NN
04 ‘ ) ~ \_\ \

eleg

0 0-2 ' 0-4 06 0-8 10
tlty
Ficure 6. Variation of eccentricity ¢ with time ¢ for phase 1 (constant ¢,). Numbers on curves are

values of u/zy. ————— , Boundary of validity for phase 1 (¢/e, = 3/z,, |p| = 1); — — —, curves
continued beyond boundary of validity for interpolation purposes.

It is of interest that when the ¢, term in (56) is ignored (a legitimate simplification, since
it never exceeds ¢,/20), equation (56) may be rewritten as

2 2 2
(“”H/"O) ~»1——;~+0(e LN A ”) (59)

¢o-+pH|a, A’ a%e’ 223 322 z2)

Thus, to our order of accuracy, (e+pH/a,)? varies linearly with time, and the equation has
the same form as for a spherical atmosphere, with ¢ replaced by (e+uH]a,).

5-2-3. Lifetime in terms of T

We next find an expression for the satellite’s ‘lifetime’, #;, in terms of 7. Since At = T,
we have

=T T (60)

while from (31) we obtain, on using (33) and (37),

1 3 1 3 H 3
Aa = —2mda®p,exp (—z) I;(z) [1 +2+5-tgmH (52—4—8—22) —|~0(e2, P §£§>] (61)

On substituting (61) into (60), taking initial values and introducing B by means of (51),

we have 3BT +_~) n 0((32 H f_)} (62)

To= 2¢, 2 — <2z0 8z% > 823

{1+ 3005 +8Z
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48 G. E. COOK AND D. G. KING-HELE

Finally, multiplying (62) by (55) gives
S TR N WA N7 N PN
tL—— 47._'0 1+680+220+823+%(1—E&)+0<6,;, 823 . (63)

t,(—T,/e,Ty) is plotted against ¢, in figure 7 for various H/a, and p.

12

N A — =1
\\ —/—1/’,’::2 ===} =0

N \\‘“M—~—~——~—~—;"“" | _—F /,/‘i}ﬂz"l

— e s —
—
/:/
—

0-6L
002 0-06 010 014 018

€o
Ficure 7. The effect of # on lifetime ¢, (phase 1, constant ¢,).
, Hlay = 0-008; ————— , Hla, = 0-006.

5-3. Solution when ¢, is variable
5:3-1. Assumed variation of §,,

For most orbits the variation of ¢, with time is usually of a basically linear form. This is
not always true if the orbital inclination ¢ is large, since the possible forms of variation for
¢, can be complicated, as equation (19) suggests. If the orbital inclination is less than about
40°, however, the variation of ¢, with time is always basically linear (though with some
slight departures from linearity), because the dominant factor is the west-to-east motion of
the perigee point relative to the Sun (with its north-south excursions providing the
departures from linearity). This basic linearity may be seen for example in figure 2 of the
paper by King-Hele & Rees (1963) : this shows the variation in Sun—perigee angle, which is
of the same form as that of ¢, for a typical satellite, Explorer 1 (z = 33°). In these conditions
the first term in (19) is dominant, and, since w, Q and L all vary almost linearly with time,
(19) may be written

cos ¢, = cos? §¢ cos? §i cos (P’ + Q't) +-smaller terms,
where P’ and @’ are constants. There are two possible approximations for ¢,. The first is
to ignore the smaller terms in the above equation completely: since cos? ¢ = 0-96, this
would mean that ¢, could never be less than 16° (or greater than 164°) even for equatorial
orbits, whereas it can be as low as zero (or as great as 180°). The second possible approxi-
mation, which appears to be the better one, is to take

cos ¢, = cos (P'+Q’%). (64)
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This allows ¢, to take its full range of values and also gives the linear variation of ¢, with ¢
suggested in the early part of this paragraph.

Since €2, and hence z?, decreases almost linearly with time (Cook et al. 1960), the best
simple approximation for £ in terms of z, which we shall adopt, is a linear variation with z2,
giving 9

cos$, = cos (Pm%g—), (65)

0

where P and @ are constants and @ is assumed positive. @ is positive if ¢ < 40°. In the
other conditions where a linear variation of ¢, with ¢ is a particularly good approximation,
namely when 140° <z < 180° or when zis near 97° and the orbital plane contains the Sun
(as with Samos 2), the minus sign in (65) must be replaced by a plus. The corresponding
changes in the results are indicated later.

In (65) P is the end-value of ¢,, when z = 0, and @ is the change in ¢, during the life of
the satellite.

5:3-2. Perigee distance and orbital period in terms of z

To obtain the variation of r, with z, we return to equation (38), which, on expressing
4 in terms of F by (34) and expanding in powers of F, gives

1 da H _——
2o +822+8ZB_;—§52(1+ )Fcosgép (1+ )F cos?g,
e He 1 F3cos®¢
+0(G oz Y (09
The maximum value of the F3 order term will always be less than the maximum value of
1/z* if Fcos¢, < 0-6, so we have introduced no significant new error term, provided F
remains less than 0-6. On substituting (65) into (66), we find

1 da 3 H F 22 . . Qz2
e 1+ +822+823M“a“_222 (1+~—) (cosPcos—Z?—ksmPsmiz—%)

2 3
(1+ )(1+c052Pcos 20z +sin 2Psin Qz)+0(ﬁ He 1 E—) (67)

z2? g’ z% 272

F2
42

_I_

To integrate (67) we make use of the Fresnel integrals, C and S, defined by

u 2 u
Clu) = f coslt—dt, S(u) = f sin " dt (68)
o 2 0
where in our analysis the variable « will be defined by the equations
~(2Q oy oz
w= (%) w=% (69)

The Fresnel integrals have been tabulated in terms of the argument « by Jahnke, Emde &
Losch (1960) and more fully by Van Wijngaarden & Scheen (1949). In integrating (67)
we also introduce the sine and cosine integrals, Ci and Si, defined by

Si () = f Slgyd Ci (v) = —f ‘ES’;ﬁdy (70)
and tabulated by Jahnke et al. (1960) and in more detail by the National Burecau of
Standards (1940, 1954).

7 Vor. 259. A.
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50 ' G. E. COOK AND D. G. KING-HELE

On integrating (67) between the limits z and z,, assuming F is constant, and utilizing
(68)—(70), we obtain after some reduction

ay—a  (ay—a , 53)
i1 () YO, )
where the first term on the right is given by the terms independent of zin equation (39), and

QZ%}F = (1 +£—O) cos ngl,O—%ZQ (1 +%) c0s ¢, +mug[{S(ug) —S(u)} cos P—{C(uy) — C(u)} sin P]

+%% [{Si (Q)—Si (;in;)} cosp_{ci (Q)—Ci (%32—2)} sinP:l

0

b2 oo
o 2148(0012) — S(ay2)} cos 2P (Clug12) — CluJ2)}sin 2]
+§% :{Si (20) —Si (2%22)} cos 2P — {Gi (20) — Ci (2%22)} sin zpﬂ . (72)

Equation (72) applies for ¢ < 40°. If 140° < ¢ < 180° (or 7 ~ 97° and the Sun is in the
orbital plane), and ¢, is taken as P z?/z3, as mentioned in the sentence after equation (65),
equation (72) is still valid if the four minus signs between the eight terms in braces are
replaced by plus signs.

On subtracting (z,—z) from both sides of (71), we obtain a corresponding equation for

perigee distance B B 3
e (”"’H”’) - +‘P‘+0(— ) (73)
sph. atm.

2z
where the spherical-atmosphere value is given by the terms independent of zin (40) or (41).
Equation (72) gives ¥ in terms of z and z: to express it in terms of ¢ we should use the
equation

_Z -:;{l—eo—]—e—k 0(e2)}. (74)

u
Uy 29

Y depends on too many parameters for graphical presentation to be feasible: the leading

term, however, is usually F
F cos¢p0_cos¢!)
2 ( z, z )’

while the leading term in (r,0—7,)/H is §1n (zy/z). Thus if zy/z = 10 and z = 3, the leading
term is of order 1 and the correction is of order §/ cos ¢ ,.

The orbital period 7" can, by the same process as in equations (44) to (46), be expressed
in the form T

15 (1) 120 ) 9

5:3+3. Eccentricity in terms of time

We determine the variation of eccentricity with time only when F is small, < 0-2.
When ¢, is variable, equation (47) may be rewritten, on substituting for p, from (37), as

Ax = —2mda®pyexp{f(r,—a)} I,(2) {1 +2¢+Fcosg,+ 0(82, g, Fe, g)} . (76)
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CONTRACTION OF SATELLITE ORBITS UNDER AIR DRAG. V 51

On substituting for exp (—pa) from (71) and again utilizing the equation At = Ty(a/a,)?,
we have

Ax  Bad(a\} x o H o %o H? F}
—A—t——— X (zl‘(;) (Cxpzl;) :l+2€+FCOS¢p—I—O(e ; *; %,Fe,z) ) (77)
,2m B B
where B'= 7?03,00%[1(20) exp {f(ry—a,) —eo} = 1+ Feosg,, (78)

Expanding (a/a,)* as {1 —}(¢,—e)}, and exp (x/a,) as (1-+e¢), and inverting, equation (77)
becomes

dt X Qz H 0¥ H? F
— B2 200 . el 20 il
B = {1+2a0 o Feos (P )+0( T, o )} (79)
Integration of (79) between the limits x and x, gives
2B't 12160 /003 9 f: . sz)
g = IR 1) s1n(P—Q)—~sm( -—7}
2
+O( % %,Fe,f). (80)
a x’ a’ z
Let ¢; denote the value of ¢ given by (80) when A = 0, so that
23;22,‘1 =1—1le+~ {sm (P— Q) —sin P}. (81)
0
Dividing (80) by (81),
¢ eo? F 0 N 1 )2
o= l—/12-—3—(1~/1)+Q{(1 —A%) sin P—sin (P— QA?) +A2sin (P—Q)}
L
2
+0(e, 2 1, % HT,Fe,E). (82)
a  x’a’e z

Equation (82) may be rewritten to give ¢ in terms of ¢ as

o= (=) =) o]+ aqn g

boop B i AW B e @eo FBOFZO)
X{thmP sm(P Q+QtL)+(1 tL)sm(P Q)}+O(221 2 5,27 e (83)

It should be remembered that in these equations P represents the end-value of ¢, and
P—Q = ¢, e is plotted against # in figure 8 for various values of P and @: the curves
shown include the largest possible departures from the /' = 0 curve.

5:3-4. Lifetime in terms of T

To obtain an expression for the satellite’s lifetime, we rewrite (61) as

Aa = —2mdap,exp{f(r,—a)}I,(z) [I—I—Qe—i—%z—{——gzvz—l—Fcosgzﬁp{—O(eZ,%I 3 Fe,, E):I,

> 823’ z
whence, using (60) and (78), (84)
; 3BT, H 3 F
Ty=— %, {1—{—3 O—I— +8 2+F(:os¢‘,,0—|—0( o 5530 Feo E)} (85)
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52 G. E. COOK AND D. G. KING-HELE

Fliminating B’ by means of (81), we have finally

3.6_0.5 7 1 . 3,. e / !i 1 . 1
! 1+ + 82 17 cos 0+ 0 {sin (P— Q) —sin P}

Iy, == oF, L ¢ 9z,
H 3 F

‘1—0(03 )8 (3,’Feo’—2—0):|' (86)
If §, completes many revolutions, as for satellites with long lifetimes, @ is large* and the
F/Q term in (86) can be ignored The formula then reduces to the spherical-atmosphere
form, if 7 is replaced by (7)o = T'o/(1L+Fcosd,g), i.e. Ty is ‘corrected’ to the value
appropriate to a mean value of density, where ¢ = 90°. In practice this means that the
“initial” 7" should be taken at ¢ » = 90° or averaged over a cycle of ¢,. When @ takes small
values, {; is significantly affected by F, however.

1-0

0-8 N

0 0-4 08 1-0
Yy
F1cure 8. Variation of eccentricity ¢ with time ¢ for phase 1 (variable ¢,).
 F =02 ,F = 0.

5-4. Formula for air density in terms of T

The basic relation for determining air density at perigee, p,, from the rate of change of
orbital period, 77, is found by eliminating Aa between equations (35) and (60). We obtain

T , 1 7 3H /(1 1 1
Pr "“‘”‘sﬁ(mH) [1 203 *§2_128z2+4a*”(2z+1622)+4z2+0( > 823 )] (87)

The effect of the x terms can be largely eliminated by expressing equation (87) in terms

of H,, where H
H - 1 (1-4) - o (1-£7). (88)

Equation (87) then reduces to

T H, 7H? 5H, ,LtH W2H? 1
Pp= 38(7raH) [1 2e-+3e h§;—128x2+ L 8x2 +O( ):l (89)

* For example, for a satellite with a life of 50 years and ¢ » = 2 deg/day, @ = 2007.
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The order terms in this equation have maximum magnitudes of 0-008 (when ¢ = 0-2) and
0-005 (when z = 3). When p == 1, the ¢ terms have maximum magnitudes of about 0-008
and 0-014 (when z = 3); when ¢ = 0-6 these values both reduce to 0-005. Thus if z < 0-6 the
4 terms in (89) can be ignored and the equation is of the same form as for a spherically
symmetrical atmosphere with /) instead of H. If 0-6 < < 1, the x4 terms ought to be
included but have only a small effect.

These relations are one-revolution results and apply for either variable or fixed ¢,.

6. SOLUTION WHEN z < 3 (PHASE 2)

If a satellite is in phase 1 when it first enters orbit, with an eccentricity of, say, 0-1, the
time it spends in phase 2 (where ¢ is less than about 0-02) will be much shorter than in
phase 1, since ¢? varies almost linearly with time. Therefore ¢, is much more likely to be
near-constant in phase 2 than in phase 1. Also, if phase 2 is short enough for ¢, to be near-
constant, the perigee height is likely to be below 250 km, so that F'is not likely to exceed 0-4.

We therefore concentrate most attention on the constant-¢, results with F < 0-4.

6-1. Solution when ¢, is constant
6-1-1. Treatment of equation for da/dx
The important step in the solution is to rewrite the equation for da/dx in a directly
integrable form. On dividing (31) by (32), we have

de  IL+I Fcosg,
a5 = L+ (I, + 1) Feosg, U T 00 eFcosdy)} 90)

In phase 2, ¢ is usually less than 0-02, and here ¢ is when necessary assumed to be 0-02 in
order terms. Terms of order ¢ have not been retained in (90) because they are available
from part I, while the terms in eF cos ¢, have been disregarded because we are assuming
|Fcosg,| < 0-4.

If |[Fcos¢,| < 0-4 equation (90) can be neatly integrated. We write

L+ 3(Iy+1,) Feosg, 1 (z+x) (91)
Iy+-1, Fcosg, — Iy(z+«)’

where « is a quantity depending on Fcos ¢, but independent of z, and « is chosen to make
(91) as accurate as possible. When ¢, < 90°, we may take

kK =Fcosg, (¢,<90°). (92)

The left-hand side of (91) then never differs from the right-hand side by a factor of more
than 1-:0199, that is 1+ 0(e), if Fcos @, < 0-4 and the error is usually much less, as shown
in figure 9 (a). When « < 0, equation (92) still provides a good approximation, as shown
by figure 9 (5), which is for the worst value of k. It could be argued that the broken line in
figure 9 (b) represents a good enough approximation to the full line, because the full line
itself is slightly erroneous, neglecting as it does terms of O(¢) and O(ke). However, the
broken line in figure 9 (5) must be regarded as an unsatisfactory approximation, because it
crosses the z axis at a slightly incorrect value of z: consequently da/dx would tend to infinity
at a slightly erroneous value of z. To avoid this difficulty when ¢, > 90° (x < 0), we choose
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k so that the left-hand and right-hand sides of (91) are zero at the same value of z. Since
I,(z+«) is zero when z = —«, we require that

LK) +3I(—K) +L(—K)} Feosg, — 0 (g, > 90°). (93)

The solution of (93) can be written

Fcosg,

- 90° 94
* 1—0-258 F2cos? ¢, (6, > 90%), (94)
<« ot 102
o +3 (a) ro=04 ~02
Q= el
§ > N 10
~— /
O = | T ©=0
& = i%
i = 098
TO i‘; 0 1 2 3
= e
=l )
S8
IF 08 : —
85 o () L
&% -
T Z
-9y ] P V.
' Y
o4 | /
S Vi
S /
. /|
/
V4
/|
0 7
/
Vs
-0-2
4 0 1 2 3
< z
:é | Ficure 9. The accuracy of equation (91) with k = Fcos¢, when « is (@) positive, and (b) negative.
> E In (b), k = =0de ——, { + (L + 1)} Ly + kL) ; ===, L(z+K)[Ly(z+k).
@)
=2 with a maximum error in  of 1 part in 3000. A more exact form, correct to 1 part in 104,
E 8 is k = Fcos@,(1+40-249«?). Since 0-249«> < 0-04, « 1s still very close to Fcos¢,. When the
~ value of k given by (94) is used, the maximum difference between the values of the left-hand

and right-hand sides of (91) is 0-009, at z ~ 2 and k = —0-4. Since the neglected O(¢) and
O(ke) terms in (90) contribute as much error as this, the approximation (91) does not
introduce any significant error. Thus we use (91), with « given by (92) when ¢, < 90° and
by (94) when ¢, > 90°. For ¢, = 90° the theory reduces to the spherical-atmosphere form.

We have so far assumed that ¢, remains constant, intending that the theory should cover
the situation when ¢, varies little or not at all. However, if ¢, < 90°, z will decrease to zero
before the end of the life, and at z = 0 the assumption of constant ¢, cannot be justified,
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because ¢, normally undergoes a discontinuous change at z = 0. For, as the orbit becomes
circular, perigee becomes momentarily undefinable, and the new perigee which arises as
soon as z departs from zero will in general appear at the point on the orbit where the density
is lowest, so that the new ‘post-circular’ value of ¢, will be the nearest point on the orbit to
the minimum-density point: ¢, will be between 90° and 180°, and its post-circular value
will be independent of its pre-circular value (unless ¢, = 0 just before z decreases to zero,
for then the orbit must pass through the minimum-density point and the subsequent value
of ¢, will always be 180°). Fortunately this discontinuity in ¢, does not affect the theory
formally, because the lifetime after z = 0 turns out to be independent of ¢, to the order of
accuracy which we are using. But the discontinuity must be kept in mind when interpreting
the results.

6:1-2. Perigee distance and orbital period in terms of z
On substituting (91) into (90) we have

1~ TS (140t ko) (95)

where « is given by (92) when ¢, < 90° and by (94) when ¢, > 90°. It is convenient to
replace z by the variable {, defined by

{ = z+x, (96)
for, since « is constant except for its discontinuity at z == 0, equation (95) may be rewritten
P q Y
1da (0
‘ﬁaz ]1( {1+O(€, Ke)} (Z :|: O). (97)
Equation (97) can be integrated to give
a4,—a ST 1)}
—=%=In {g() [14+0(e,e)] (2 0), (98)

where a, and {; are the initial values of @ and {. Hence the perigee distance 7, can be

expressed as ,

ot A 10 k)-GO (2 +0) (99)
Equations (98) and (99) are the same as for a spherically symmetrical atmosphere, except
that { appears instead of z. Figure 10 shows the variation of perigee distance with {. This is
the same as the corresponding diagram for a spherically symmetrical atmosphere, except
that curves have been added for negative values of {. When {; = 3, values of (r,, —r,) can
be obtained from {r,(3) —7,({)}—{r,(3) —7,}, i.e. the difference in the ordinates at the
appropriate values of .

The end of the satellite’s life occurs just before (r,, —7,) tends to infinity, i.e. just before
{0, or z++k—>0. Ifkis negative (¢, > 90°), this means that at the end of the life z tends
towards —«, either from above or below, according as z, is greater or less than |«|, and
z never takes the value zero (unless it is zero initially) : thus equation (99) and figure 17
give the complete solution for perigee distance. If « is positive however (¢, < 90°), z will
decrease to zero before the end of the life. While z is decreasing from z; to zero the value of
r, can be found in the normal way from (99), and the value of 7, at z = 0, r,_ say, is given
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by writing { = « in (99). To evaluate the change in 7, after z = 0, the ‘post-circular’ phase,
the circular orbit should be treated as a new initial condition, and the post-circular value
of k (always negative) should be used. If ¢, = 0in the pre-circular phase, the post-circular
value of ¢, will be 180° and the post-circular value of x is —F/(1—0-258F2): otherwise the
post-circular value of k cannot be specified beforehand. Figure 11 shows the variation of 7,
with z for an orbit with z, = 3 and F = 0-2 when ¢, is either 0 or 180° initially. When

{rp(3) —7,(O)}/H

~_|
L
{Tp(—o 4) "Q(Q}/H

_

3 2 I -02  -0+4
g

Ficure 10. Variation of perigee distance 7, with ¢ for phase 2 (constant ¢,). Double
arrowheads on the curves indicate the direction of time increasing.

¢, = 180°, z steadily decreases towards its end-value near 0-2 (corresponding to ¢ = 0-001
if Hla = 0-005); when ¢, = 0, z decreases to zero and then in the post-circular phase
¢, = 180° so that x ~ —0-2 and z increases towards a value near 0-2.

From equation (98) the orbital period 7'is given by

Bt

6-1:3. The parameter { in terms of time
We now find how eccentricity varies with time, by establishing the time variation of ¢,
which is related to ¢ by the equation

¢ — (H]a) ((—0). (101)
The starting point is equation (32). In (32) we first write
143 (Ly+1) Feos g, = 1,(0) {14 O(3«)}, (102)

where { = z+«. The term O($«?) is indicated by the Taylor expansion of I,(z+«) and has
also been verified numerically. Then, on replacing p, and 7, in (32) by p, and r;, taking r,
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as the initial perigee distance, putting At = T = T;(a/a,)* and eliminating a by means of
(98), we can write equation (32) in the form

e ) (103)

where B, — 3’%’141 1,(8) exp (—2,). (104)

asymptote
202

(rp—1,)[H
-~
\

2 #
/

%

///4

’,4-"//’/
3 2 1 0

FiGure 11. Variation of perigee distance r, with z for an orbit with z; = 3 and F' = 0-2, when ¢, is
constant. Arrows indicate direction of time increasing. ——, ¢, = 180°; ———, ¢, = 0.

If we again exclude the point z = 0, where « suffers a discontinuity, (103) may be rewritten as

ds H{

aZ:—EE{H—O(e, 2} (z +0). (105)
Equation (105) does not adequately cover the situation when {; = 0 (z, = —«). For, as
{, >0, B; becomes proportional to {?, so that, by (105), d{/d¢ = 0 when {; = 0; thus the
orbit contracts with { = 0 (z = —«) and equation (105) becomes trivial. Discussion of this

special case is deferred till § 6-1-5.
Excluding the special cases already mentioned, we may integrate (105) to give

" é%;(&—&){wme, W} (20,4 +0), (106)

where 7 = t—1#,.

The next step is to find the satellite’s lifetime. In parts I-IV the lifetime was defined as
the value of 7 when ¢ = 0: this definition must now be generalized, and the obvious definition
for the lifetime 7, is the value of 7 given by (106) when { = 0. Thus we have

7, = HC}/24} B, (107)

8 Vor. 259. A.
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Dividing (106) by (107) gives
2
L{+0(6 3} = 1-%  (z+0,4+0). (108)
L 1

This equation is of the same form as for a spherically symmetrical atmosphere, the only
difference being that ¢ (or z) is replaced by (.

If «k <0, orif x > 0 and z > 0, equation (108) can be used quite straightforwardly. If
zreaches zero, however, it is not obvious that equation (107) gives a realistic estimate of the
lifetime, since (106) has been forcibly carried across its discontinuity in obtaining (107).
A little further investigation is needed, as follows.

Consider an orbit for which z, = 0 initially or, strictly, for which z, is nearly zero but
suficiently different from zero to have allowed a recognizable perigee position to develop,
so that its post-circular value of « is determinate. { then increases from an initial value «
(negative, since ¢, > 90°) towards zero, and equations (105) and (106) are valid. When
z; -0, so that {; —«, the parameter

2 2
5T off),
on replacing the Bessel function 7, in (104) by its series expansion. Thus for an initially

circular orbit with {; = «, (107) gives
2
HT, {1+0(%)}. (109)

L= 2mop, a?

Equation (109) shows that the lifetime in an initially circular orbit is independent of
k (i.e. independent of ¢,) to the accuracy to which we are working, and is the same as for
a spherically symmetrical atmosphere. This important result shows that the lifetime after
z = 0 will be the same for any value of k (less than 0-4). Therefore the lifetime obtained by
putting { = 0in (106), even though it embodies the incorrect assumption that « retains the
same value to the end of the life, is still correct, because the lifetime after z = 0isindependent
of k and the use of a wrong value of « is immaterial.

So equation (108) can still be used for the post-circular phase if z = 0 is treated as a new
starting point. {is then calculated using the post-circular value of «, and 7/7; is to be taken
as (1—1,)/(1,—7,), where 7, is the time at z = 0. From (108), 7, is given by

Tz =1 {1—K*[(z,+&)%, (110)
with « having its pre-circular value.

Although the results are best given in the generalized form (108), it is also useful to show
directly how 7/7; depends on x. On expansion in powers of k, equation (108) yields

T ez 2ke ¢ k2 k2
e ol 5. %)) ()

In practice equation (111) would be used only for z; > 1, since the error term O(«?/z})

becomes large when z; < 1. Equation (111) is, to the accuracy to which it has been carried,

the same as the phase 1 result, equation (56). Therefore figure 6 can also be used in phase 2,

if efe, is read as efe,, t[t; as 7/7;, and the numbers on the curves are read as values of /z,.
Equation (111), like (56), may be rewritten to give ¢ in terms of time as
3 3 2 42

(o (ool ) e

TL L
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6:1-4. Lifetime in terms of T,
We next derive expressions for the lifetime 7, in terms of 7°;. From (60) and (31) we have

Tl = —3mda, p, exp{f(r;—a,)} [Ly(z,) +1,(z,) I cos ¢p+ O(ey, key)]- (113)
On writing Iy(z)) +1)(z)) Fcos g, = Ij(z,+k) {1+ 0(3«2)}, (114)
where the O(3«?) term is deduced from the Taylor expansion of I(z, +«), equation (113)
becomes Ty = —3mda,pyexp (—2z,) I(&)) {1+ O(ey, §62)}, (115)
where {; == z, +«, as before. Dividing (115) by (104) we have
n__3ByTia, 1y(§) 3,2
Tl v—“—ézlq Tl‘(cT){l+0(el,§K )}. (116)
0-03
/ &
0-02 ///’
&, ~ // &
’E«ME —] / /
| :
0
0-01 e -
/
,__.—-——""/
0 1 2 3
1l
Ficure 12. Variation of lifetime 7, with ¢ for phase 2 (constant ¢,).
Numbers on curves are values of Ha;.
Multiplying (116) by (107), we obtain
— -T2 01 0, 3. (117)

e 4T ay 1)(§)
This is the equation for lifetime: it is the same as for a spherically symmetrical atmosphere
except that z, has been replaced by {;. 7,7/T}, as given by (117), is plotted against ¢, for
various H/a, in figure 12. Since {; = « when z, = 0, figure 12 confirms that for an initially
circular orbit 7; is almost independent of « (for x < 0-4). '

6:1-5. Solution when z, = —«k
When ¢, > 90° the initial value of z may happen to be equal to
—k =—Fcosg,/(1—-0-258cos?g,).
In this special case dz/da is zero, from (95), and z remains constant at —« as the orbit

contracts. The situation is analogous to a circular orbit in a spherical atmosphere, and only
8-2
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the variations of @ and 7" with time arise. From equation (31), on replacing suffix 0 by
suffix 2, we have

Aa = —2mda*p, exp {fi(ry—a)} [1y( —«) +1;(—«) Fcos g, -+ O(e, ke)]. (118)

This is the same as the equation for a circular orbit in a spherical atmosphere (King-Hele
1964), if p,, the density at the initial height for a circular orbit, is replaced by

patlo(—x) +kl(—K)},

and a,, the initial radius, is replaced by r,. From (1), p, is the density at ¢ = 90° at distance
r, from the Earth’s centre: in practice r, would be taken equal to a,, the initial value of a.
Thus the equations already derived for circular orbits in a spherical atmosphere remain
valid for an orbit with z = —«, if p, and g, are suitably modified in the equations where
they appear.

6:1:6. An alternative solution for r, in terms of z (1 < z < 3)

Equation (99) is a highly satisfactory solution for 7, in terms of z, since the parameter «
has been absorbed into ¢, the argument of the Bessel function. The very generality of this
solution does however obscure the dependence of 7, on . So it is also useful to derive a form
in which the « term is separated out. In this section the distinction between the definitions
of « does not arise because z > 1 and (z+«) cannot be near zero; thus « is being used as
a symbol for Fcos ¢,

Our procedure is to expand (90) in powers of «, on the assumption that « is less than
about 0-3. Such an expansion is most likely to be useful if (1, + 7,) does not much exceed 7,.
Now (I,+1,) /21, increases from 0-90 at z = 3 to 124 at z = 1, and then tends to infinity as
z->0. So a power series in « is promising for 1 < z < 3. Expanding (90) in powers of x, and
writing y, = I,/I, (n & 1), we have

;Ifila = Yo +K[1— k(Yo +¥2) 1 {1 — 370 (yo +¥2)} +O(e, £%). (119)

As z decreases from 3 to 1, (y,+y,) increases from 1-8 to 2-48, so that we may write
Yo+Yy, = 2{1 4+ O(x)} within the term in square brackets in (119), to give

1 de
Tds — Yot k(=0 {1 —39(Yo+y2)}+ O(e, %). (120)

On replacing the y, by 1,/I;, equation (120) may be rewritten as

f g~ 70 [1= 5 00, (121)

where (y,-+7,) has been eliminated by means of the recurrence relation (Watson 1958, p. 79)
I,+1, = 2(d1,/dz).

Equation (121) may be integrated at once to give

oa_ [1 2 II( D 41— >{y01_%}] [1+0(e,%], (122)
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wherey,, = I,(z,)/I;(z,). Subtracting (z,—z) from both sides of (122), we have the required
equation for perigee distance 7,

- I
rle Ty In ZI( 1) —(z;—2z) —k(1—k) {i’—ym}_[_ 0(e, £%). (123)
From (122) the orbital period 7'is given by
T _(a\t . 3H, z1(z) 31—« H I, eH Hkg3
T, (le) B 1“%‘11 zI, t 2a, (j;”‘ 01)+0(71, 7). (124)

6-2. Solution when ¢, is variable (1 < z < 3)
6-2-1. Perigee distance and orbital period in terms of z
When ¢,, and hence «, is variable, a direct integration of equation (95) is not feasible
and we use the alternative approach described in § 6-1-6, which is valid for z > 1. Again

k = Fcos¢g, for all ¢,. We start from equation (119) and seek an approximation for the
term within braces. Now it turns out, very conveniently, that for 1 <z <3

Yo(Yot+Yys) —1 = 5322 (125)
with a maximum error of 0-06y,. With this approximation, (119) becomes
1da 0
Tz~ :yo 322} {1-+0(e, k2,0:06x)}. (126)
We take the same approximation for ¢, as in phase 1, namely equation (65), but rewrite
it in the form cos ¢, — cos (P—Q, 22/2}), (127)

where P again represents the value of ¢, when z = 0, and @, = Qz}/zj represents the change
in ¢, between z = z, and z = 0. The linear variation of ¢, with time, which is the basis for
(127), is most accurate for i < 40°; but in phase 2 the change in ¢, will usually be less than
in phase 1 because the time is usually shorter, and (127) will then often be an adequate
approximation for all inclinations. On writing « = F'cos¢, and eliminating ¢, by means
of (127), equation (126) becomes

1da I, oF
Hdz I, 3z?
The F-term may be integrated by using the Fresnel integrals ¢ and § defined in (68),
to give

(cosPcos @z +sin Psin Q2 )+ O (e, k%, 0-06«) . (128)

a—a . z11i(z)
2 A

+ X+ 0(e, k2%, 0-06k), (129)
in which
X= b [[cosqS —écosgé +muy [{S(u;) —S(u)} cos P—{C(u )——C(u)}sinP]}] (130)
3z, nT p Ty 1 1 )
where, in analogy with (69), u, = (2Q,/m)%, ufu; = z/z,. (131)

The corresponding equation for perigee distance is

Ty (’pl“’ﬂ) + X+ 0(k2,0-06k), 132
H H sph. atm ( ) ( )

8-3
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while the orbital period is given by
T T) SHX Hg?
== (5 —2=22 O(w—) : 133
Ti (T'l sph. atm, 2611 a ( )

6-2-2. The parameter z in terms of time

We next determine the variation of eccentricity with time by finding how z varies with
time. From equation (32) we have

d 2
T = — 7 ap exp{flr,—a)} [1,+1F cos ¢, (I, 1) + O (e, )] (134)

Substituting for exp (—fa) from (129), inverting, and using the approximation
I, Iy 38 1
(I +1) itoy (135)
which has a maximum error of 0-07, we can rewrite equation (134) as

ai B, dt z%  bF
___w— {[1 F(————) cos( Q} ) 5] o COSd,

1

5””1 [{S (uy) — S()} cos P—{C(u;) — C(u) }sin P] 4+ O(e, 2, oom)]] (136)
where B, =77 pin (=) exp (Bl )} (137)

On integrating (136) between the limits z and z;, we find

7

2B, (1_22) I:l 5F 5F7Tu1

& _§ZCOS ¢p1—— S(uy) cos P—C(u) sinP}]

+ j’g (sin gy —sing,) 4o [{0( ) — C(w)} cos P+ {S(u,) —S(u)} sin P]

5Fmu, u?
- —3}1 I:{S(ul) — u? S(u)} cos P— {C(ul) — } sin P:l
5F z
+3—Zl(cos¢p1~—z~lcos¢p)+0(€>/<2), (138)
where 7 = t—¢;, as usual. Let the value of 7 when ¢ = 0 be denoted by 7;, so that
2B,1 3F . 2F .
e 14 20 g, —sinP) o () cosP+S@)sin ). (139)

(7, differs slightly from the true lifetime, since the final value of ¢ is likely to be non-zero,
as § 61 indicates). Dividing (138) by (139), we obtain

2

y4 . .
~ (sinP—sin ¢l,1)}

T . .
T—— Q—I- X+4Q1:smP»sm¢p—

L

2F [{C(u)~§C(ul):cosP+{S(u)“i—gs(ul)}SinP:lJrO(eaKZ)a (140)

3zju i

where X is given by (130).
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6-2-3. Lifetime in terms of T
Finally, we derive an expression for 7, in terms of 7°;. From (60) and (31) we have
T\ = —3nda, py exp{B(r,—a})} [1y(21) +11(2,) Fcos $p+0(er)], (141)

or, by (137), T, :—?’B Tl

{y01+Fcos¢p1+0(el)} (142)

Multiplying (142) by (139), we obtain

3¢, 13 F
T, = — 4%1 [1+y cos ¢, + 4Q (smgép1 sin P)

3Z E_(Cluy) cos P+S(u,) sin P+ O(ey, )]. (143)
l 1

If ¢, is likely to vary by more than 1 revolution, it is natural when estimating lifetime to
‘correct’ 7', to a value appropriate to the mean density (when ¢, = 90°), i.e. to replace 7
by (Z1)eo — Z4/{1+ (Flyp) cos g} from (141). Thus

7y = (71) sph. atm. [[1 +F[Z-% (sing,, —sin P) +§Z—?-u~l{0(ul) cos P+ S(u,) sinP}:H], (144)

3ellem
4T 1)90

When @, exceeds 2w, 7, never differs from (7)), aum, by more than about 1 9%,

where ' (TL) sph. atm, —

6:3. Solution when ¢, is variable (z < 1)

As z decreases towards zero, ¢, not only varies regularly under the influence of orbital
precession, but it is also affected by the day-to-night variation in atmospheric density
itself: for example, whenever z passes through zero (and this may happen several times),
perigee is likely to re-appear at a point nearly opposite the diurnal bulge, as indicated in
§ 6:1-1. Thus, when z is near zero, ¢, may undergo very rapid changes which depend on the
particular value that ¢, happens to have as z approaches zero. In these circumstances the
variation of ¢, with z cannot be specified beforehand. A quite different treatment is called
for, and it has been decided to discuss the theory for z < 1 in a separate paper.

Although there is certainly a need to evaluate the variation of z and ¢, with ¢ when z is
small, it is worth noting that the semi major axis a is a more important parameter than z,
because the position of perigee and the value of the eccentricity do not have much influence
on the orbital contraction for near-circular orbits. Itshould therefore be possible to obtain
a useful solution for the variation of a with time while taking a mean value for ¢,. Specifi-
cally, if z < 0-5 (¢ less than about 0-003), equation (31) may be rewritten as

Aa = —2nda®p, exp f(r; —a) {1:03+ 0(0-03,0-1 Fcos @, ¢, %)}, (145)

where the Bessel functions have been replaced by their mean values over the interval
0 <z < 0-5. Equation (145) is the same as for a circular orbit in a spherical atmosphere
(King-Hele 1964) if p,, the density at the initial height for a circular orbit, is, in the few
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equations where it appears, replaced by 1:03p,, where p, is the value of p at mean initial
orbital height. The error term 0-01 which appears in the circular-orbit theory would
however be increased to 0-03 or 0-1 Fcos ¢, whichever was higher.

6:4. Formula for air density in terms of T'
A formula for the mean air density p, at a distance 7, from the Earth’s centre in terms
of 7" can be obtained from equations (31) and (32)
po T exp{fla—r)} (146)
0 3mda 1y-+2el, + Fcos ¢ {1, +3e(ly+315)} -+ O(e?)
This is a one-revolution result and applies for either fixed or variable ¢,. Itis worth remem-

bering that there is no restriction on the magnitude of F, provided that the density variation
resembles the form given in equation (1).

If r, is taken as the perigee distance 7,, as will often be appropriate, equation (146) gives
the mean density at perigee height. The exponent f(a—7,) in (146) then reduces to z.

7. DiscussioN

The aim of this paper has been to extend the theory developed in part I for a spherically
symmetrical atmosphere to an atmosphere which exhibits a day-to-night variation in
density resembling that in the real terrestrial atmosphere. We assume that the air density
p at a given distance 7 from the Earth’s centre depends only on the angular distance ¢ from
the centre of the diurnal bulge, i.e. the point where density is greatest. We take p to vary
sinusoidally with ¢ and exponentially with 7,

p = po(1--Fcos g) exp{— (r—r,) [H},
where pg, 7, I and H are constant. This form, although very simple, is a satisfactory first
approximation (figure 2). F may be expected to take values from about 0-1 at 200 km
height to about 0-7 at 600km height (see figure 3). H will usually take a value between
20 and 70 km.

The analysis is in two parts, phase 1 when the orbital eccentricity e lies between about
0-02 and 0-2, and phase 2 when ¢ is less than about 0-02, or, strictly, z < 3, where z = ae/H.
In both phase 1 and phase 2 the results take different forms, according as the angular
distance ¢, of the perigee point from the centre of the bulge is constant or varies linearly
with time.

The variation of perigee distance 7, with eccentricity ¢ in phase 1 for a spherically sym-
metrical atmosphere is shown in figure 4 of part I. Under the ‘constant-¢,” theory (which
in practice would probably be used if ¢, did not vary by more than about 30°), the correction
to be subtracted from (r,,—7,)/H to allow for the effects of the day-to-night variation in
density is & /z,, where £ is shown in figure 5 and y = Fcos ¢,/(14-Fcos ¢,). When ¢, varies
with time, the correction V' to be added to (r,,—r,)/H, given by equation (72), has as its

dominant term
17 (991??;)_0 ._%) ,

It is to be expected that the correction to (r,,—7,)/H will be fairly small when the eccen-
tricity is 0-1 or greater. For most of the drag then occurs near perigee, and the details of the
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variation in drag at points distant from perigee are not very important. For example, if
¢, = 0, it is of little consequence that the drag at apogee is 5ggq of that at perigee, instead
of, say, 1959 in a spherically symmetrical atmosphere. If the initial eccentricity is smaller,
however, the effect of the day-to-night variation can be much greater.

Alternatively, the effect of the day-to-night variation in density can be allowed for (with
constant ¢,) by continuing to use the spherical-atmosphere results, but with (¢-uxH/a,)
instead of e. If, for example, ¢y =01, (r,y—7,)/H =05 and H/a = 0-006, then
¢ = 0-037—0-0038x, which shows directly how ¢ varies with x for a given value of
(ry0—1,) [ H.

The variation of eccentricity with time when ¢, is constant is given by equation (58) and
shown in figure 6. This graph applies both for phase 1, reading numbers on the curves as
values of u/z,, and also for phase 2, if the numbers on the curves are read as values of
k|z,(= Fcos¢,/z,). The day-to-night variation in density can have quite a large effect.
Half-way through the life, for example, ¢/¢, is 0-71 for a spherically symmetrical atmosphere,
but would be reduced to 067 if u/z, = 0-1, e.g. if z, = 5 and y = 0-5.

Alternatively the day-to-night variation in air density can be allowed for by continuing
to use the spherical-atmosphere result, namely ¢?/e§ = 1 —t/t;, but with (e+uH/a,) instead

of ¢, so that in phase 1 (fiﬂ{ﬂa_o)z =1 .
eo+uH|ay b

In phase 2, a similar equation applies, ¢ being replaced by (¢-++«H/a,), but certain complica-
tions (to be discussed later) arise when ¢ = 0.

For phase 1 and ¢, constant, the day-to-night variation in density can considerably alter
the formula for lifetime in terms of 77, as figure 7 shows. If x = —1, to take an extreme
example, the lifetime is shorter by between 3 9, (for ¢, == 0-2) and 30 %, (for ¢, = 3H|a,)
than would be predicted on the basis of a spherically symmetrical atmosphere. This effect
is to be expected: for, if the perigee is ‘stuck’ at ¢, = 180°, the apogee height will decrease
at a fairly normal rate until the orbit is near-circular; by then the density at apogee will be
much greater than would have been expected for a spherical atmosphere and the subsequent
decay will be much quicker. If ¢, varies by more than 1 cycle, however, the day-to-night
variation in density has little effect on the lifetime formula, provided the value of 7" used
is corrected to the value appropriate to ¢, = 90°, or averaged over a cycle of ¢,.

If phase 2, as is usual, lasts for a shorter time than phase 1, ¢, is less likely to show a large
variation and the constant-¢, solution is of more importance than in phase 1. The
constant-¢, solution is particularly simple: it is found that the spherical-atmosphere results
still hold if z is replaced by z--«, where « ~ Fcos¢,. (For ¢, < 90° k = Fcos¢,; and for
¢, > 90° k= Fcosg,/(1—0-258F%cos?¢,).) « is assumed to be less than 0-4. Thus the
graph for the variation of r,, figure 10, is the same as before, except that the variable has
been changed from z to { = z-+«. With « having values up to 0-4, figure 10 shows that the
day-to-night variation in density can have a large effect on the value of 7, for given eccen-
tricity, that is, for given z: for z = 0-6 and z, = 3, (r,;—7,)/H changes from 1-7 when
k = 0 to 3-4 when k = —0-4.

. 'The lifetime of the satellite ends when z approaches the value which makes (r,,—7,)
tend to infinity. In parts I-IV this always occurred as z— 0, but now it occurs as {0
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(see figure 10). Thus the lifetime ends just before z reaches the value —«, instead of just
before z reaches zero. There are two possible situations:

(1) If ¢,>90° « is negative, so that the lifetime ends as the eccentricity tends
towards a finite positive value, when z is approximately equal to —« ~ —Fcos¢,, and
¢~ —HFcos¢,la;. If ¢, = 180° this means that at the end of the life the orbit tends
towards an eccentricity equal to that of the atmosphere, so that drag is approximately
constant round the orbit.

(2) If, on the other hand, ¢, < 90° (so that « > 0), the eccentricity can decreasc to zero
without causing an excessive decrease in perigee height, since { == « when ¢ == 0. Thus, for
an orbit with ¥ > 0, the eccentricity decreases until the orbit is circular, and then a new
perigee develops near the point of minimum density on the circular orbit. ¢, therefore
undergoes a discontinuity at z = 0 and in the ‘post-circular’ phase takes a new value
between 90° and 180° (this value is always 180° if the orbit passes through the ¢ = 180°
point at the time it is circular). Thus « takes a new (negative) value, and { increases from
a negative value towards zero, as on the right-hand branch of figure 10.

Figure 11 shows situations (1) and (2) in practice, for /' = 0-2: for ¢, = 180°, z decreases
steadily towards a value close to 0-2; for ¢, = 0, z decreases to zero, and, since the orbit
passes through ¢ = 180° when ¢, = 0, the post-circular value of ¢, is 180°, and the post-
circular value of x is —0-2, so that again z— 0-2 at the end of the life.

An interesting special case occurs when z = —« ({ = 0) initially. The distribution of
drag round the orbit is then such that the eccentricity has no tendency to change: the value
of z therefore remains constant at —« as the orbit contracts, and only the variation of semi
major axis with time arises. This is analogous to a circular orbit in a spherically symmetrical
atmosphere, and the results are the same.

For a spherically symmetrical atmosphere the square of the eccentricity (or of z) varies
almost linearly with time. When the day-to-night variation in density is allowed for, with
¢, constant, it is {? which varies linearly with time, as equation (108) shows. If z passes
through zero, however, equation (108) must be used in two stages. Suppose, for example,
that z, = 0-3, F = 0-2, ¢, = 0 and the lifetime is 10 days: then we have { = z-0-2 and
from equation (110) the time at z = 0, 7,, is given by 7, = 10{1 —(0-2/0-5)2} — 8-4 days. If
7 < 7,,zcan be found from equation (108) with { = z+4-0-2. If7 > 7_, time must be measured
from 7, as zero point and, since x = —0-2 in the post-circular phase, { = z—0-2. Thus, for
example, at time 9-2 days, (7—7,)/(1,—7,) = 0-50 and {/{;, = 0-71, giving z = 0-058
(¢ = 0-058H/a).

Figure 12 gives the lifetime in terms of 7", for phase 2, constant ¢,. This is the same as for
a spherical atmosphere, except that z, is replaced by ¢;. If || < 0-4, the maximum change
in lifetime resulting from the day-to-night variation is about 10 9,. For an initially circular
orbit the day-to-night variation in density has no effect on lifetime, apart from terms of
order «2/8.

Full results for variable ¢, in phase 2 are given only for z > 1. The change in perigee
height due to the day-to-night variation can again be substantial: if ¥ = 0-2 and z; = 2, the
correction to be added to (r,,—7,)/H is of order 0-1 when z = 1, while (r,, —r,)/H itself is
of order 0-7.

The above discussion indicates that the effect of a day-to-night variation depends on
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a large number of parameters and this makes it difficult to draw general conclusions. As
mentioned previously, many of the equations have the same form as those for a spherical
atmosphere derived in part I, if the eccentricity is replaced by (e+uH/a,) in phase 1 and
z is replaced by (z+«) in phase 2. Thus, for orbits with xH/a, small compared with ¢, that
is with F/z small, it follows that, whether ¢, varies or not, the day-to-night variation has
little effect and ¢? still varies almost linearly with time. This result also suggests that F/z
provides perhaps the best general indication of the severity of the day-to-night effect on
the orbit.
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